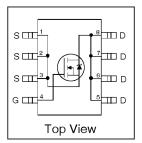
PD - 95212A

International TOR Rectifier

IRF7809AVPbF

- N-Channel Application-Specific MOSFETs
- Ideal for CPU Core DC-DC Converters
- · Low Conduction Losses
- · Low Switching Losses
- Minimizes Parallel MOSFETs for high current applications
- 100% Tested for Rg
- Lead-Free


Description

This new device employs advanced HEXFET Power MOSFET technology to achieve an unprecedented balance of on-resistance and gate charge. The reduced conduction and switching losses make it ideal for high efficiency DC-DC converters that power the latest generation of microprocessors.

The IRF7809AV has been optimized for all parameters that are critical in synchronous buck converters including $R_{\mathrm{DS(on)}},$ gate charge and Cdv/dt-induced turn-on immunity. The IRF7809AV offers particulary low $R_{\mathrm{DS(on)}}$ and high Cdv/dt immunity for synchronous FET applications.

The package is designed for vapor phase, infra-red, convection, or wave soldering techniques. Power dissipation of greater than 2W is possible in a typical PCB mount application.

DEVICE CHARACTERISTICS ⑤

	IRF7809AV					
R _{DS(on)}	7.0m $Ω$					
$Q_{_{G}}$	41nC					
Q _{sw}	14nC					
Q _{oss}	30nC					

Absolute Maximum Ratings

Absolute Maximum Hatings								
Parameter		Symbol	IRF7809A V	Units				
Drain-Source Voltage		V _{DS}	30	V				
Gate-Source Voltage		V _{GS}	±12]				
Continuous Drain or Source	T _A = 25°C	I _D	13.3					
Current (V _{GS} ≥ 4.5V)	T _L = 90°C		14.6] A				
Pulsed Drain Current①		I _{DM}	100					
Power Dissipation $T_A = 25^{\circ}C$		P_{D}	2.5	W				
	T _L = 90°C		3.0					
Junction & Storage Temperat	ure Range	T_J,T_STG	-55 to 150	°C				
Continuous Source Current (F	Body Diode)	Is	2.5	Α				
Pulsed Source Current①		I _{sm}	50					

Thermal Resistance

Parameter		Max.	Units
Maximum Junction-to-Ambient®	R _{eJA}	50	°C/W
Maximum Junction-to-Lead	R _{eJL}	20	°C/W

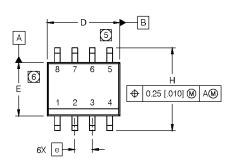
IRF7809AVPbF

Electrical Characteristics

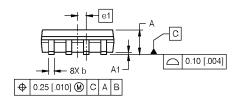
Parameter		Min	Тур	Max	Units	Conditions
Drain-to-Source Breakdown Voltage	BV _{DSS}	30	-	-	V	$V_{GS} = 0V$, $I_D = 250\mu A$
Static Drain-Source on Resistance	R _{DS(on)}		7.0	9.0	m $Ω$	$V_{\odot} = 4.5 \text{V}, I_{D} = 15 \text{A} \odot$
Gate Threshold Voltage	V _{GS(th)}	1.0			V	$V_{DS} = V_{GS}, I_D = 250\mu A$
Drain-Source Leakage	I _{DSS}			30		$V_{DS} = 24V, V_{GS} = 0$
Current				150	μΑ	$V_{DS} = 24V, V_{GS} = 0,$
						Tj = 100°C
Gate-Source Leakage Current*	I _{GSS}			±100	nA	$V_{GS} = \pm 12V$
Total Gate Chg Cont FET	Q _G		41	62		$V_{os} = 5V, I_{D} = 15A, V_{DS} = 20V$
Total Gate Chg Sync FET	Q _G		36	54		$V_{OS} = 5V$, $V_{DS} < 100$ mV
Pre-Vth Gate-Source Charge	Q _{GS1}		7.0			$V_{DS} = 20V, I_{D} = 15A$
Post-Vth Gate-Source Charge	Q _{GS2}		2.3		nC	
Gate to Drain Charge	Q _{GD}		12			I _D =15A, V _{DS} =16V
Switch Chg($Q_{gs2} + Q_{gd}$)	Q _{sw}		14	21		
Output Charge*	Q _{oss}		30	45		$V_{DS} = 16V, V_{GS} = 0$
Gate Resistance	R _a		1.5	3.0	Ω	
Turn-on Delay Time	t _{d (on)}		14			$V_{DD} = 16V, I_{D} = 15A$
Rise Time	t,		36		ns	$V_{GS} = 5V$
Turn-off Delay Time	t _{d (off)}		96			Clamped Inductive Load
Fall Time	t _f		10			
Input Capacitance	C _{iss}	_	3780	ı		
Output Capacitance	Coss	_	1060	ı	pF	$V_{DS} = 16V, V_{GS} = 0$
Reverse Transfer Capacitan		C _{rss}		130	_	

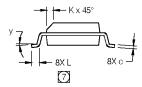
Source-Drain Rating & Characteristics

•						
Parameter		Min	Тур	Max	Units	Conditions
Diode Forward Voltage*	V _{SD}			1.3	V	$I_{\rm S} = 15 {\rm A} \odot, {\rm V}_{\rm GS} = 0 {\rm V}$
Reverse Recovery Charge ⊕	Q _{rr}		120		nC	di/dt ~ 700A/ μ s V _{DS} = 16V, V _{QS} = 0V, I _S = 15A
Reverse Recovery Charge (with Parallel Schottky) ④	Q _{rr(s)}		150		nC	di/dt = 700A/ μ s (with 10BQ040) $V_{DS} = 16V$, $V_{QS} = 0V$, $I_{S} = 15A$

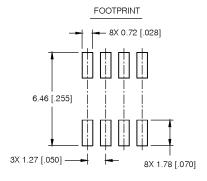

- Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
 Pulse width $\le 400 \ \mu s$; duty cycle $\le 2^{\circ} k$.
 When mounted on 1 inch square copper board, t < 10 sec.
 Typ = measured Q_{oss}
 Typical values measured at $V_{GS} = 4.5 V$, $I_F = 15 A$.

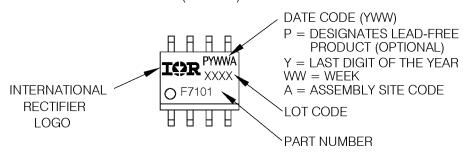
International TOR Rectifier


IRF7809AVPbF


SO-8 Package Outline

Dimensions are shown in milimeters (inches)

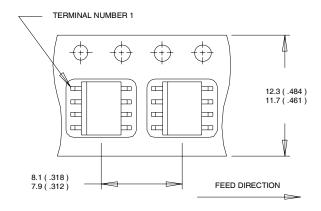

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e 1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	


NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- [5] DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

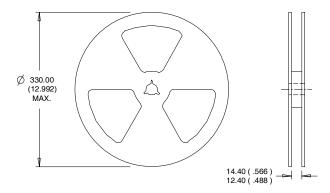
SO-8 Part Marking Information

EXAMPLE: THIS IS AN IRF7101 (MOSFET)


7

IRF7809AVPbF

International IOR Rectifier


SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

